Skip to content

Vibe Chords

Chords of Daily Life

Menu
  • Reflections
  • Religion and Philosophies
    • Culture
  • Academics
    • College Mathematics
    • Pre-College Mathematics
      • Algebra
        • Bionomial Theorem
        • Combinatorics
        • Complex Numbers
        • Inequalities
        • Number Theory
        • Polynomials and Equations
        • Probability Theory
        • Progressions and Sequences
  • Education
  • India
  • People
  • Personal
Menu

Week -2 | Complex Numbers – 5

Posted on November 16, 2018 by bubuenaa

Practice problems   (MCQ Questions may have more than 1 correct answer)

Q-1) Find the value of S, where

 

Q-2) If \(z_1,z_2\) be 2 complex numbers in the argand plane the n

\(|z_1+\sqrt{z_1^2-z_2^2}|+|z_1-\sqrt{z_1^2-z-2^2}|\) =

a) \(z_1\)    b)\(\)|z_2|    c)\(|z_1+z_2|\)    d)None of these

 

Q-3) If \(S(n)=i^n+i^{2n}\), where \(n \in N\), find the number of distinct elements in \(S(n)\).

 

Q-4) The roots of the cubic equation \((z+\alpha \beta)^3=\alpha ^3\)  \((\alpha \ne 0)\) represent the vertices of a triangle whose sides are of length

a)\(\frac{1}{\sqrt{3}}|\alpha \beta|\)    b)\(\sqrt{3}|\alpha|\)    c)\(\sqrt{3}|\beta|\)    d)\(\frac{1}{\sqrt{3}}|\alpha|\)

 

Q-5) \((1+i)(1+2i)(1+3i)…(1+ni)=\alpha + i\beta\), then find the value of \(2.5.10..(1+n^2)\) in terms of \(\alpha, \beta\).

 

Q-6) If \(|z_1|=|z_2|=…|z_n|=1\), then show that \(|z_1+z_2+…z_n|=\left| \frac{1}{z_1}+\frac{1}{z_2}+…\frac{1}{z_n} \right|\)

 

Q-7) If \(z_1,z_2,z_3\) are 3 complex numbers and \(a,b,c \in R^+\), such that

then  \(\frac{a^2}{z_2-z_3}+\frac{b^2}{z_3-z_1} + \frac{c^2}{z_1-z_2} = \)

a) 0    b) abc    c) 3abc    d) a+b+c

 

Q-8) If \(z_1=a+ib\) and \(z_2=c+id\) be 2 complex numbers such that \(|z_1|=|z_2|=1\) and \(\text{Re}(z_1\overline{z_2})=0\), then the pair of complex numbers \(\omega_1=a+ic\) and \(\omega_2=b+id\) satisfies

a) \(|\omega_1|=1\)    b) \(|\omega_2|=1\)    c) \(\text{Re}(\omega_1 \overline{\omega_2})=0\)    d) \(\omega_1 \overline{\omega_2}=0\)

 

Q-9)Let \(z_1,z_2\) be 2 distinct complex numbers with \(|z_1|=|z_2|\). Also \(\text{Re}(z_1)>0\) & \(\text{Img}(z_2)<0\), then \(\frac{z_1+z_2}{z_1-z_2}\) may be

a) 0    b) real & positive    c) real & negative    d) purely imaginary

 

Q-10) If \(\alpha , \beta\) be the roots of the equation \(x^2-2x+4=0\), then find the value of \(\alpha^6+\beta^6\).

 

Q-11) If \(z=\frac{q+ir}{1+p}\), then for \(\frac{p+iq}{1+r}=\frac{1+iz}{1-iz}\) to be true we must have

a) \(p^2+q^2+r^2=1\)    b) \(p^2+q^2+r^2=2\)    c) \(p^2+q^2+r^2=3\)    d)None of these

 

Q-12) If \(x=a+b\), \(y=a\omega+b\omega^2\), \(z=a\omega^2+b\omega\), then \(x^3+y^3+z^3\) equals

a) \(a^3+b^3\)    b) \((a+b)^3\)    c) \(3(a^3+b^3)\)    d) None of these

 

Q-13) If \(1,\omega, \omega^2…\omega^{n-1}\) be the nth roots of unity and \(z_1,z_2\) be any non-zero complex numbers, then find the value of

 

Q-14) If \(X\) be the set of all complex numbers \(z\) such that \(|z|=1\). Define a relation \(R\) on \(X\) by \(z_1Rz_2=|\arg(z_1)-\arg(z_2)|=\frac{2\pi}{3}\), then \(R\) is

a)Reflexive    b)Symmetric    c)Transitive    d)Anti-Symmetric
(You can read about basic relation terminology over here)

 

Q-15) If \(\alpha\) is a complex constant such that \(\alpha z^2+z+\overline{\alpha}=0\) has a real root then

a) \(\alpha + \overline{\alpha}=1\)    b) \(\alpha + \overline{\alpha}=0\)    c) \(\alpha + \overline{\alpha}=-1\)    d) The absolute value of the real root is 1

<<In case there is any confusion over any example (solved or not), problem or concept, please feel free to create a thread in the appropriate forum. Our memebrs/experts will try their best to help solve the problem for you>>

 

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Comments

  1. Ravi Dua on 4 years
  2. Rakesh on Netaji, Bhagwanji and midnight musings
  3. Royal CBD on RMO – 2007 | An Insight into Pythagorean triplets
  4. sushi on RMO – 2007 | An Insight into Pythagorean triplets
  5. Sushant Kumar on RMO – 2007 | An Insight into Pythagorean triplets

Recent Posts

  • Durga Pujo and festivities
  • 4 years
  • 2020 and more
  • Week – 16 | Binomial Theorem – 3
  • Week – 16 | Binomial Theorem – 2

Subscribe to Our Newsletter

Oh hi there 👋
It’s nice to meet you.

Sign up to receive awesome content in your inbox, every month.

We don’t spam! Read our privacy policy for more info.

Check your inbox or spam folder to confirm your subscription.

CMI Culture Diwali Durga Puja Engineering India INMO ISI JEE Advanced JEE Mains RMO

Tags: Engineering, JEE Advanced, JEE Mains

Who are we

Welcome to our little corner of the internet! Here, we dive into the everyday moments that make life what it is—sometimes profound, sometimes quirky, but always worth reflecting on. From musings on spirituality and science to thoughts on academics and the simple pleasures of life, this space is a blend of everything that piques our curiosity. If you love reading and writing about the world around you, we're definitely on the same wavelength. Together, let's explore the things we like, the things we don't, and everything in between!

Want to speak - we are listening on contact.us@vibechords.com